XMT7100 Series Intelligent PID Temperature Controller

- Input type can be RTD input (Pt100, Cu50) or Thermocouple input (T, R, J, B, S, K, E, WRe3-WRe25)
- The instrument has automatic function to self adapt to different systems
- Instrument can be degrees Celsius, degrees Fahrenheit temperature
- Five control optional:
 0. One alarm relay
 1. Relay contact PID output
 2. One alarm relay output; SSR all the way non-contact level PID output
 3. One alarm relay output; SSR-level all the way back to poor control output
 4. Backlash relay control output

Specifications
- Power supply: AC/DC85~260V (50Hz/60Hz)
- Contact capacity: AC 250V/3A
- Contact life: 1×10^6
- SSR-level: 8V (Open-circuit voltage); 30mA (short-circuit current)
- Temperature precision: 0.2%FS
- Environment: 0~+50℃; ≤85%RH
- Outline Dimension: 48×24×75
- Panel Dimension: 45×22

Panel description

1. Indicator Lamp
 - AL: Relay output lamp: Lights when output is turned on
2. Up key: Used for selecting next parameter or increase numerals
3. Down key: Used for selecting previous parameter and used to increase numerals
4. Shift key: Used to shift the digital when the setting is changed and used to perform autotuning function
5. Set key: Used for parameter registration/calling up
6. Measured value (PV) display unit
7. Output control output indicator
 - AT: Autotuning lamp: Flashes during autotuning execution

Parameter setting guide

1. Details of parameters
 - Symbol | Description | Range | Factory value
 - inty | Input type | Table | P10.0
 - outy | Control output type | 0, 1, 2, 3, 4 | 2
 - Hy | Autotuning PV bias | 0~9999 | 0.3
 - Psb | PV bias | -1000~1000 | 0.0
 - rd | Control action type | 0: heat; 1: cool | 0
 - CorF | Engineering unit selection | 0: °C; 1: °F | 0
 - End | End | | |

2. Parameters of the initial functional description

1) inty: Temperature sensor type list

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Sensor type</th>
<th>Temperature range</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>Pt100 RTD</td>
<td>-200~400</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>Pt100 RTD</td>
<td>-50~1600</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>J</td>
<td>Pt100 RTD</td>
<td>-200~1200</td>
<td></td>
</tr>
<tr>
<td>WRE</td>
<td>WRE TC</td>
<td>-2300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>Pt100 RTD</td>
<td>350~1800</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>STC</td>
<td>Pt100 RTD</td>
<td>-50~1600</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>K</td>
<td>Pt100 RTD</td>
<td>-200~1300</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>Pt100 RTD</td>
<td>-200~900</td>
<td></td>
</tr>
<tr>
<td>P10.0</td>
<td>P100</td>
<td>Cu50 RTD</td>
<td>-199.9~600.0</td>
<td></td>
</tr>
<tr>
<td>P100</td>
<td>Cu50</td>
<td>Cu50 RTD</td>
<td>-199~600</td>
<td></td>
</tr>
<tr>
<td>Cu50</td>
<td>Cu50</td>
<td>Cu50 RTD</td>
<td>-50.0~150.0</td>
<td></td>
</tr>
</tbody>
</table>

2) outy: Control output type

0. Relay alarm output (see Figure 1);
 - SSR output is invalid, used for Constant temperature control, the target value for the SV

3) End

(See Figure 2)

Three-panel description

(二) Indication Lamp

AL: Relay output lamp: Lights when output is turned on

(三) Up key

Used for selecting next parameter or increase numerals

(四) Down key

Used for selecting previous parameter and used to increase numerals

(五) Shift key

Used to shift the digital when the setting is changed and used to perform autotuning function

(六) Set key

Used for parameter registration/calling up

(七) Measured value (PV) display unit

(八) Out-control output indicator

(九) AT: Autotuning lamp

Flashes during autotuning execution

Three-panel description

1. Indication Lamp
 - AL: Relay output lamp: Lights when output is turned on
2. Up key: Used for selecting next parameter or increase numerals
3. Down key: Used for selecting previous parameter and used to increase numerals
4. Shift key: Used to shift the digital when the setting is changed and used to perform autotuning function
5. Set key: Used for parameter registration/calling up
6. Measured value (PV) display unit
7. Out-control output indicator
8. AT: Autotuning lamp: Flashes during autotuning execution
Wiring diagram

![Wiring Diagram](image)

Start AT function: In the constant temperature control, constant or if they can not over-temperature phenomena, can activate the self-tuning instrument functions, more appropriate instrument calculates the PID parameters. Long press > keys, flashing lights until the AT, instrument to enter a state of self-tuning; AT lamp goes out, the end of self-tuning, instrument set by self-tuning PID parameter adjustment.

Ending AT function: a long three seconds by the > key, AT light is off, the end of self-tuning, the parameters do not change.

- Self-tuning from time to time, there will be a significant over-temperature, please lower SV values appropriate to prevent the accident.
- Must be properly connected to the corresponding sensor, heater, otherwise self-tuning unable to complete.
- Self-tuning system response time depends on speed, ranging from a few minutes to several hours.
- Self-tuning is a function of time on the start line, do not need to start every time.

Note 6(Filt): 0 means the Pvdigital filter is turned off; 1, 2 and 3 are weak, medium and strong respectively.

Parameters settings procedure

Self-tuning from time to time, there will be a significant over-temperature, please lower SV values appropriate to prevent the accident.

- Must be properly connected to the corresponding sensor, heater, otherwise self-tuning unable to complete.
- Self-tuning system response time depends on speed, ranging from a few minutes to several hours.
- Self-tuning is a function of time on the start line, do not need to start every time.

SV and alarm parameters (Log in by inputting password “0001’ after pressing set key)

1. Detail of SV and alarm parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Range</th>
<th>Factory value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ssv</td>
<td>set value</td>
<td></td>
<td>80.0</td>
</tr>
<tr>
<td>RH1</td>
<td>AH1</td>
<td>Relay J1 pull-in set value</td>
<td>80.0</td>
</tr>
<tr>
<td>RL1</td>
<td>All</td>
<td>Relay J1 release set value</td>
<td>90.0</td>
</tr>
<tr>
<td>End</td>
<td>End</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: In normal display mode, the SV is increased by using the Up and Down key.

PID parameter setting guide

Symbol

- P : Proportional’ band
- I : Integral time
- D : Derivative time
- Ssv : overshoot suppression factor
- ot : Proportional cycle
- Filt : Digital filter factor
- End : End

Description

- 0.1~99.9%
- 2~1999(minute)
- 0~399(minute)
- 0.0~1.0
- 2
- 0~3
- End

Range

- 0.1~99.9%
- 2~1999(minute)
- 0~399(minute)
- 0~1.0
- 2
- 0~3
- End

Factory value

- 5.0
- 100
- 20
- 0.2
- 2
- 0

Note 1: the temperature oscillation is inverse proportion of P value and proportion of the response speed.

Note 2: Set the time of integral action which eliminate the offset occurring in proportional control.

Note 3: Set the time of derivative action which prevents ripples by predicting output change and thus improves control stability.

Note 4: Overshooting and under shooting are restricted by the Souf and increase of the parameter can suppress the overshooting.

Note 5: In general, control cycle is 2 when output type is voltage pulse output, and is 5-15 when output type is relay.